28/12/2014

La conjecture de Goldbach est-elle vraie?

Goldbach.jpg

 

Tout nombre pair supérieur à 3 peut s’écrire comme la somme de deux nombres premiers: cet énoncé a beau avoir l’air tout simple, il n’est toujours pas démontré aujourd’hui. Ce séduisant graphique de forme triangulaire illustre cette affirmation, plus connue sous le nom de conjecture de Goldbach. Sur les côtés gauche et droit de notre schéma, on remarque la succession de tous les nombres premiers jusqu’à 47 (ou plus petits que 50, ce qui revient au même). Au centre du triangle, le résultat de leurs additions (ou plus précisément toutes les solutions de l’équation 2N = p + q avec p et q premiers), visibles à travers les lignes bleue et rose qui se croisent. Les nombres qui en résultent sont tous pairs, ce qui est logique, la somme de deux premiers supérieurs à deux, donc l’un et l’autre impairs, engendrant forcément un résultat pair, comme (dé)montré ci-dessous.

(2k + 1) + (2n +1) = 2k + 2n + 2 = 2 x (k + n + 1)

On note encore que tous les nombres pairs jusqu’à 50 se retrouvent dans cette liste. Et que les lignes grises figurant à côté comportent toutes au moins un point de croisement. Ce constat nous amène naturellement à la fameuse conjecture de Goldbach.

En 1742, le mathématicien allemand Christian Goldbach (1690 – 1764) écrivit une lettre à Leonhard Euler, lui proposant la conjecture suivante : «Tout nombre plus grand que 2 peut être écrit comme une somme de trois nombres premiers». Ce à quoi Euler répondit que cette affirmation découlait d’un autre énoncé, à savoir que tout nombre pair (supérieur à 3 dans la formulation actuelle, comme dit au début de ce billet) peut s’écrire comme la somme de deux nombres premiers. Tel est le point de départ d’un problème insoluble qui est en réalité le cas particulier d’une autre conjecture en rapport avec l’hypothèse H de Schinzel (sur laquelle je consacrerai un billet l’année prochaine). Il existe également des variantes de la conjecture et une version faible stipulant que tout entier supérieur ou égal à 9 est somme de trois nombres premiers impairs.

Mais revenons à Goldbach. Depuis 2012, sa conjecture a été démontrée (par le mathématicien portugais Tomas Oliveira e Silva) pour tous les nombres pairs jusqu’à 4 x 1018. En d’autres termes, pour démontrer sa fausseté (peu probable, mais sait-on jamais), il suffirait de lui trouver un contre-exemple, autrement dit un nombre pair supérieur à 4 x 1018 qui ne soit pas la somme de deux nombres premiers. Si ce nombre existe, il est donc énorme. Et si on ne le trouve jamais, la conjecture est donc vraie.

On peut également étudier le problème en passant par la quantité de partitions correspondant à chaque nombre N. Elle est généralement notée r(N). Pour la définir, un exemple suffira. Prenons le nombre 100. On peut l’écrire comme suit :

100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53

Au total, il y a donc six partitions, six façons d’écrire 100 comme somme de deux nombres premiers. Autrement dit, pour N = 100, r(N) = 6. En toute légitimité, on peut dès lors supposer que plus N est grand et plus r(N) le sera aussi. (Le cas r(N) = 0 infirmerait évidemment la conjecture.) Assertion que le tableau ci-dessous, appelé comète de Goldbach, semble confirmer.


Capture d’écran 2014-12-28 à 19.57.25.png


















Et pourtant, malgré tout cela, la conjecture n’est toujours pas démontrée !

En recherchant sur le net, on s’aperçoit qu’il existe plusieurs démonstrations en ligne de la conjecture. Aucune n’a pour l’instant été validée. En revanche, la version faible de la conjecture serait démontrée depuis 2013. Dans la liste des problèmes de Hilbert, la conjecture de Goldbach porte le numéro 8, qu’elle partage avec l’hypothèse de Riemann et la conjecture des nombres premiers jumeaux.

 

 

 

20:21 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (1) | |  Facebook | | | |

Commentaires

plus simple le 3 est le tri-nère de la nativité sur toute vie...il faut 1 et 1 pour faire le trois. PH.M. Bissig

Écrit par : philemon | 29/12/2014

Les commentaires sont fermés.