31/01/2017

La liste de Hilbert est-elle encore d'actualité?

hilbert2.jpgEn 1900, lors du deuxième congrès international des mathématiciens, David Hilbert, connu pour avoir développé l'axiomatisation de la géométrie et la théorie des invariants (entre autres), a proposé une liste de 23 problèmes alors non résolus. Je ne vais évidemment pas tous les citer dans le détail. Il faudrait de nombreuses pages pour cela, même de manière synthétique. Plus de 110 ans après, qu'en reste-t-il? Premier constat, onze d'entre eux ont été résolus, démontrés ou infirmés. Exemple avec le dixième, qui consistait à trouver un algorithme afin de déterminer si une équation diophantienne (ou polynomiale, avec plusieurs inconnues et des solutions entières) avait des solutions. L'affaire a été résolue en 1970 par Matiiassevitch, non sans utiliser pour cela les nombres de Fibonacci, sur lesquels je consacrerai un billet dans l'année. Résultat de ce problème, un tel algorithme est impossible à trouver.

Parmi les douze problèmes restants, l'un d'entre eux a été prouvé indécidable. Il s'agit de l'hypothèse du continu, souvent évoquée lorsqu'on parle des différentes formes d'infinis. Trois autres problèmes sont partiellement résolus, et deux autres sont à la frontière de l'indécidabilité, dont celui sur la différentiabilité des groupes de Lie. Enfin, le quatrième problème, à savoir définir toutes les géométries dont les géodésiques sont des droites, il a été jugé trop vague. Bilan des opérations, il reste encore cinq problèmes non résolus. Et en réalité sept!

Soit le 6e, qui consisterait à déterminer une axiomatisation de la physique sur la base d'un modèle mathématique. Le 12e, qui exigerait d'étendre le théorème de Kronecker-Weber à tous les corps de nombres. Le 16e, qui porte sur les courbes algébriques, et le 23e, qui aborde le calcul des variations. Et enfin, il y a le 8e. Désormais le plus célèbre de tous, puisqu'il contient le Saint-Graal. Pour une raison qui le regarde, et qu'on a le droit aujourd'hui de trouver absurde, Hilbert a en effet regroupé sous ce numéro trois conjectures qui entretiennent une certaine parenté, voire une parenté directe, les unes avec les autres. C’est-à-dire l’hypothèse de Riemann, la conjecture de Goldbach et la conjecture des nombres premiers jumeaux. J’ai dédié à ces trois problèmes ouverts bon nombre de billets dans mon blog, et j’en écrirai encore d’autres en cours d’année, mais on peut constater qu’aujourd’hui, l’hypothèse de Riemann, pour ne citer qu’elle, est un peu la star des conjectures en attente de résolution en mathématiques. Elle mériterait donc de figurer en première position dans semblable liste.

Cent ans après Hilbert, dont la liste est devenue obsolète, même si la résolution de plusieurs problèmes a considérablement favorisé les avancées mathématiques au XXe siècle, l’institut de mathématiques Clay a mis sur pied en 2000 une nouvelle liste, les problèmes du prix du millénaire. Ces sept défis réputés insurmontables sont dotés d’’un prix d’un million de dollars chacun pour celui ou celle qui les résoudrait. A ce jour, seul l’un d’entre eux, la conjecture de Poincaré, a été résolue. En tête de liste figure cette fois en toute logique l’hypothèse de Riemann, la plus convoitée et célèbre de toutes, talonnée par le crucial problème P = NP. Quant aux quatre autres, elles demandent un bagage trop conséquent pour être exposées ici.

21:34 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (0) | |  Facebook | | | |

Les commentaires sont fermés.