30/01/2018

Votre date de naissance est-elle contenue dans un nombre premier ?

collage.jpgVous n’y échapperez pas. Oui, il existe au moins un nombre premier qui contient votre date de naissance, et un autre qui commence par elle. Mieux, il en existe une infinité de chaque. La chose n’est évidemment, on s’en doute, pas aisée à prouver, et repose sur l’association qu’on peut faire entre les nombres premiers et les nombres univers, lesquels contiennent n’importe quelle séquence de chiffres. Tout part en fait d’un théorème démontré par Dirichlet au XIXe siècle. Dans sa version simplifiée, il est facile à comprendre. Soit a et b, deux entiers. S’ils sont premiers entre eux, c’est-à-dire s’ils n’admettent aucun diviseur commun (comme 2 et 3, 11 et 21, 9 et 49, etc), alors il existe une infinité de nombres premiers de la forme an + b. Si a et b ne sont pas premiers entre eux et possèdent des diviseurs communs, alors il existe au plus un nombre premier de la forme an + b.

C’est la généralisation du théorème de Dirichlet, établie en 1959 par le Polonais Sierpinski, qui permet de voir plus grand, si j’ose dire. En effet, si a1, a2, a3, ….., an sont des chiffres compris entre 0 et 9, et b1, b2, b3, …., bm des chiffres choisis entre 1, 3, 7 et 9 (qui sont les quatre terminaisons possibles pour un nombre premier, aussi grand soit-il), alors il existe une infinité de nombres premiers qui peuvent s’écrire en base 10 sous la forme

a1a2a3…an   …..  b1b2b3…bm.

Je vous épargne la démonstration, non sans préciser qu’entre la séquence des a et celle des b, peuvent s’intercaler bien sûr autant de chiffres qu’on veut. Car ce qui nous intéresse, c’est le corollaire direct et pratique de ce théorème. A savoir que n’importe quelle séquence de chiffres donnée est contenue dans une infinité de nombres premiers. Plus schématiquement, on trouve tout ce qu’on veut dans les nombres premiers. C’est là la définition d’un nombre univers, soit un nombre qui contient toutes les séquences de chiffres une infinité de fois. Y compris donc votre date de naissance, toutes les symphonies de Beethoven parfaitement codées, et même la Recherche de Proust elle aussi sous forme codée. Pour l’anecdote, on ignore à ce jour si toute séquence finie apparaît dans les décimales de Pi (π), donc si celui-ci est un nombre univers. En revanche, le nombre d’Erdös en est un.

Voici ses premières décimales:

0,235711131719232931374143475359........ et ainsi de suite à l’infini. Mais faut-il vraiment vous expliquer comment il se forme? Pour les lecteurs assidus de mon blog, ce sera un jeu d’enfant de le décrire et même de le continuer.

22:19 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (0) | |  Facebook | | | |

Les commentaires sont fermés.