24/07/2016

Pourquoi les nombres de Liouville nous fascinent-ils?

factorielle.jpgA chaque langage ses conventions, ses symboles, son vocabulaire. Celui des maths n’y fait pas exception. Un exemple au hasard. Placé après un nombre (ou chiffre), le point d'exclamation exprime une factorielle. Le petit tableau ci-dessus permettra de comprendre la notion de factorielle sans qu'il soit nécessaire de l'assortir d'une longue explication. Produit de tous les entiers naturels inférieurs ou égaux à n, la factorielle n ! s'utilise en combinatoire, mais pas seulement. Sa stricte définition se traduit par la formule ci-dessous, où le Pi majuscule désigne un produit sur un intervalle donné, parfois infini (à l'instar du sigma majuscule pour l'addition).

déf fact.png

Plus intéressant, observons les sommes des inverses des factorielles via cette forme générique :
inverses fact.pngLe cas x = 1 nous permet de retrouver une vieille connaissance :

esomme.pngSoit la constante e, nombre transcendant (mais n'anticipons pas) et base du logarithme naturel. Il est la somme de cette série, qui consiste en fait à décomposer la fonction logarithmique en série entière. On peut dès lors constater que les inverses des factorielles donnent les coefficients du développement de la fonction exponentielle. Plus simplement:plusimple.pngMais venons-en à Liouville. Dans un roman paru récemment, La Formule de Stokes, roman, audin.jpgque je vous conseille fortement, la Française Michèle Audin rappelle la beauté du plus connu des nombres de Liouville, parfois surnommé constante de Liouville. Célèbre mathématicien français, Joseph Liouville (1809 – 1882, portrait ci-contre) liouvilleportait.jpegs’est en effet intéressé à des nombres relativement proches des séries logarithmiques vues ci-dessus. Leur forme générique est donnée par la formulegénérique liouville.png

 

 

 

avec b plus grand que 1 et les ak compris entre 0 et b – 1.

Le plus fameux de ces nombres est donc la constante de Liouville :

constanteliouville.png

Les positions des 1, de plus en plus espacés parmi les 0, y correspondent aux factorielles successives de l'ensemble des entiers naturels. Magnifique, non ? Il s’agit là d’un nombre réel mais surtout de l’un des premiers exemples de réel transcendant, c’est-à-dire, par opposition aux nombres algébriques, qu’il n’est racine d’aucune équation polynomiale. La chose se démontre aisément, et vous en trouverez facilement la preuve sur plusieurs sites, preuve que je ne reproduis pas ici afin de ne pas rallonger ce billet. La transcendance du nombre e ne sera quant à elle établie que plus tard, soit en 1873. L’ensemble des nombres de Liouville, qui se construisent tous sur le même modèle, a par ailleurs la puissance du continu. Autrement dit, il est équipotent à celui des nombres réels. J’avais déjà consacré un billet à ces passionnantes questions de cardinalité et de hiérarchie dans les infinis et y reviendrai d’ailleurs bientôt. Au XXe siècle, le grand mathématicien hongrois Paul Erdös (1913 – 1996) a démontré que tout nombre réel non nul peut s’écrire comme somme et comme produit de deux nombres de Liouville. Problème ardu sur lequel j’espère revenir dans un prochain billet.

17:20 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (1) | |  Facebook | | | |

27/05/2016

Le mystère des crop circles: 1) L'apparition du nombre Pi

crop3.jpgCette nouvelle série de billets se propose de revenir, toutefois sans tenter de l’expliquer, sur un phénomène qui a mauvaise presse et dont les médias ne parlent peu ou prou jamais, à savoir les crop circles. Vaste supercherie et œuvre de quelques farceurs surdoués (c’est peu crédible, même si certains artistes en ont ensuite créé eux-mêmes) pour les uns, émanation de civilisations extra-terrestres lointaines (non prouvable vu l’état de nos connaissances actuelles) pour d’autres, ce qui bien sûr infirmerait le paradoxe de Fermi, ces agroglyphes surgissent sans crier gare, généralement de nuit, dans des champs de céréales et se forment par la flétrissure des épis. Ils dévoilent des motifs et compositions géométriques complexes visibles depuis le ciel. Certains couvrent plusieurs hectares.

Pour ce premier billet, voici un crop circle découvert à Barbary Castle, dans le Wilshire, le 1er juin 2008. Il mesure 45 mètres et il s’agit d’un des crop circles les plus complexes jamais observés. C’est l’astrophysicien Mike Reed qui a découvert, après des mois de recherches, comment l’interpréter. Se basant sur une photographie, il a codé l’image en un graphe que voici :

cropcirclecolors.jpg

Observons chacun des segments proportionnellement identiques, décalés à des endroits stratégiques, ici représentés par des couleurs différentes. Les plus petits, rouges, près du centre, sont au nombre de 3. Un segment unique apparaît ensuite, en vert. Il contient un point. Suivent 4 segments violets, 1 orange, 5 bleus clairs, 9 jaunes, 2 violets, 6 rouges, 5 verts et 4 bleus. Enfin, trois cercles noirs terminent le circuit, suggérant l’idée d’infinité. Que signifient ces chiffres ? La réponse saute aux yeux lorsqu’on les écrit bout à bout et dans l’ordre.

3.141592654…

On reconnaît en effet là le nombre Pi, le plus célèbre d’entre tous les nombres, et ses dix premières décimales. L’infinitude de la période représentée par les trois cercles noirs concluant le cercle fait clairement partie du dessin. Tout cela est d’autant plus surprenant que cette représentation de Pi ne correspond à aucun usage mathématique du nombre, toutes civilisations et époques confondues. Qu’en déduire ? Que le crop circle a été conçu par un génie des maths dont l’identité demeurera à jamais inconnue ? Ou qu’il serait l’œuvre de quelque civilisation lointaine qui cherche à communiquer avec l’homme ? La question reste douloureusement ouverte.

15:46 Publié dans Inexpliqué, Mathématiques, Sciences | Lien permanent | Commentaires (17) | |  Facebook | | | |

16/03/2016

A-t-on découvert une loi ordonnant les nombres premiers?

premiers.jpgDepuis quelques jours, la communauté mathématique est en ébullition. Deux chercheurs de l’université de Stanford, en Californie – Kannan Soundararajan et Robert Lemke Oliver –, aidés d’énormes processeurs, ont découvert une propriété inédite concernant les nombres premiers (représentés ci-dessus dans un graphique circulaire), qui pour rappel, ne sont divisibles que par eux-mêmes et par 1. Le pire, c’est que cette découverte est d’une simplicité affolante, au point de se demander pourquoi personne n’y a songé avant. Elle consiste à observer les chiffres terminant les nombres premiers. Ceux-ci ne peuvent en effet se terminer que par 1, 3, 7 ou 9. Pour des raisons qu’il n’est nul besoin de démontrer, une terminaison par 2, 4, 6 ou 8 est exclue – tous les nombres de cette forme étant des multiples de 2. Raisonnement identique pour 5 ou 0 et les multiples de 5. Restent donc ces quatre chiffres, seule possibilité de terminaison pour un candidat à la primalité : 1, 3, 7 et 9. Nos deux chercheurs ont donc observé tous les nombres premiers jusqu’à un milliard et ont remarqué que la fréquence d’apparition de certaines terminaisons après d’autres n’était pas équiprobable. Prenons l’exemple d’un nombre premier se terminant par 1. En toute logique, la probabilité que le premier suivant, son successeur, se termine par 1, 3, 7 ou 9 devrait être la même. Or non, justement. Il n’en est rien. Ainsi, un premier se finissant par 1 n’a que 18% de chances d’être suivi par un premier de même forme. En revanche, il y a 30% de chances qu’il soit suivi par un premier se terminant par 3 ou 7. Et 22% par un premier se terminant par le chiffre 9. Et ainsi de suite.

Le problème, c’est que ces écarts probabilistes ne sont pas minimes. Ils sont importants, conséquents. Suffisamment en tout cas pour poser question et surtout remettre en cause l’ordre a priori aléatoire de l’apparition des premiers dans la suite des entiers. D’autant plus que l’écart se creuse encore plus lorsqu’on débute la chaîne par un premier se terminant par 9. Il a alors 65% de chances supplémentaires d’être suivi par un premier se terminant par 1 que par un autre se terminant par 9. La logique voudrait que toutes ces probabilités s’équilibrent, comme je l’ai dit avant. C’est loin d’être le cas, ce qui laisse supposer l’existence d’une loi cachée ordonnant la succession des nombres premiers et leur apparition selon un critère moins aléatoire qu’on le pensait. A moins de redéfinir la notion d’aléatoire, autrement dit de l’élargir. Nous en sommes loin.

Enfin, pour réfuter cette découverte, on pourrait affirmer que ces fréquences d’apparitions ne sont pas si illogiques lorsqu’on observe tous les nombres, premiers ou pas, se terminant par 1, 3, 7 ou 9. Prenons l’exemple de la chaîne 41, 43, 47 et 49. 41 est premier. Il est suivi par 43 (ce sont en l’occurrence des jumeaux), puis par 47. La probabilité qu’il soit suivi par un premier se terminant à son tour par 1 est donc plus faible que les autres. C’est empirique et imparable, et valable pour n’importe quelle chaîne analogue. Sauf que les deux chercheurs de Stanford (photo ci-dessous) ont envisagé ce cas de figure (raisonnement) et constaté qu’il ne tenait pas la route par rapport à la magnitude des biais découlant de leur observation des nombres dans d’autres bases (exemple en base 3, où tous les nombres se terminent par 1 ou 2). En d’autres termes, les mathématiciens ont du pain sur la planche pour plusieurs décennies.

stanford.jpg

18:32 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (4) | |  Facebook | | | |