27/07/2015

Quels mystères se nichent sous la constante gamma?

gamma.jpgJ'ai déjà parlé dans mon blog de plusieurs nombres particuliers. La constante de Brun, mais bien sûr aussi Pi, e et i, qu'Euler relia dans son identité magique, sans oublier les nombres parfaits, les nombres intouchables, le nombre 2147483647, les nombres de Mersenne et quelques autres que vous pouvez retrouver en vous baladant dans la section mathématiques de mon blog. Aujourd'hui, je vais évoquer la constante gamma, plus connue sous le nom de constante d'Euler-Mascheroni (du nom des deux mathématiciens qui furent les premiers à identifier bon nombre de ses décimales). La voici, avec ses 100 premières décimales:


0,577215664901532860606512090082402431042159335939923598805767234884867726777 6646709369470632917467495

 

Pour la déterminer, il suffit d'abord de considérer une série connue sous le nom de série harmonique (représentation graphique ci-dessus) qui consiste à sommer les inverses des entiers naturels. La voici, exprimée sous sa forme usuelle de somme infinie:

Capture d’écran 2015-07-27 à 19.04.04.png

 

Il s'agit d'une série divergente, c'est-à-dire qui tend vers l'infini pour k très grand. Mais en revanche, sa divergence est extrêmement lente. Si on l'exprime graphiquement, on va très vite observer sa proximité avec une autre fonction, à savoir ln(x), ou logarithme naturel, comme le montre le graphique ci-dessous, sur lequel on voit clairement la similitude entre les deux courbes:

Capture d’écran 2015-07-27 à 19.11.56.png

L'idée est alors de calculer la différence entre les deux, la série harmonique et le logarithme naturel, et de voir ce vers quoi on tend. La formule est aisée à déduire:

Capture d’écran 2015-07-27 à 19.14.42.png

Ou, sous sa forme condensée:

Capture d’écran 2015-07-27 à 19.14.54.png

Mais vers quoi tend cette limite, figurée ci-dessus par la lettre grecque gamma? Justement vers cette constante gamma, qu'on peut approximer par le nombre 0,5772156649. Cela dit, le calcul est lent, et il faut aller jusqu'à de très grandes valeurs de k pour que les décimales se précisent. On ne sait toujours pas aujourd'hui si cette constante d'Euler-Mascheroni est un nombre rationnel ou pas, mais si elle l'était, son dénominateur posséderait plus de 242 080 chiffres. Le Suisse Leonhard Euler (1707 - 1783) fut le premier à la calculer en 1781 avec quinze décimales, puis Lorenzo Mascheroni (1750 - 1800) parvint à en donner dix-neuf (décimales) en 1791. Aujourd'hui, on en connaît environ 30 milliards. Mais à quoi sert-elle, me direz-vous, du moins si vous êtes arrivés jusque là? La réponse pourrait prendre plusieurs billets de ce blog. Mais au-delà de son rôle par rapport à la célèbre fonction gamma, qui fera l'objet d'un billet ultérieur, on retrouve cette constante d'Euler-Mascheroni dans d'innombrables formules. Mon but n'est pas d'en faire la liste, très longue, mais juste de signaler l'étonnante égalité que voici:

 

Capture d’écran 2015-07-27 à 19.34.09.png

Surprenante car elle met en relation notre constante gamma avec la célèbre fonction zêta de Riemann (piqûre de rappel ici), qu'on retrouve ci-dessus symbolisée par sa lettre grecque. Qu'est-ce que la fonction zêta vient faire ici? Quel incroyable mystère gouverne cet improbable rapprochement? Bien malins ceux qui pourront le dire.

 

19:52 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (2) | |  Facebook | | | |

19/07/2015

Saviez-vous que les décimales de Pi contiennent votre date de naissance (et bien plus)?

pi_wrapping_paper_print.jpgLa chasse aux décimales de Pi n'est pas un sport mathématique comme les autres. Il occupe en tout cas les chercheurs depuis plus de 4000 ans. Le record en cours date de 2011, et ce sont deux Japonais, Alexander J. Yee et Shigeru Kondo, qui le détiennent, avec 10 000 milliards de décimales. Evidemment, ils n'ont pas obtenu ce résultat en deux heures de calcul, et il leur a même fallu 371 jours, soit plus d'une année, pour l'obtenir. Le nombre Pi, ou ∏ (16e lettre de l'aphabet grec), souvent défini en géométrie euclidienne comme le rapport entre la circonférence d'un cercle avec son diamètre, semble attesté par des tablettes babyloniennes d'environ 2000 ans avant J.-C.

Faire son histoire n'est pas mon but aujourd'hui. Pi comporte un nombre de décimales infini. Au point que si l'on observe ses 200 premiers millions de décimales, on peut y trouver n'importe quelle suite arbitraire de six (voire plus, avec un peu de chance) chiffres. En d'autres termes, n'importe quelle date de naissance à six chiffres est susceptible d'y figurer. Prenons un exemple. Mettons que vous fêtiez vos trente ans aujourd'hui, vous seriez donc né(e) le 19 juillet 1985, soit le 19.07.85. Cette suite, 190785, surgit bel et bien en position 93821 des décimales de Pi. Mieux, elle se trouve répétée 207 fois dans les 200 premiers millions de décimales de notre nombre. Pour vous amuser à trouver d'autres occurrences de dates, vous pouvez aller consulter un site d'utilisation très simple qui fera le calcul pour vous,

The Pi-Search Page

(le lien actif vous y renvoie directement). Vous pouvez bien sûr tenter l'expérience avec des nombres de plus de six chiffres. Et, en extrapolant, avec les lettres de votre prénom, moyennant codage préalable. Pi semble ainsi contenir n'importe quelle succession de chiffres de longueur finie. J'écris "semble" à dessein. Car il s'agit là de la définition d'un nombre univers, dénommé ainsi car on peut y trouver (selon un codage en chiffres prédéterminé), tous les livres déjà écrits et à venir, l'histoire de nos vies, sa contradiction, la liste de tous les numéros gagnants dans l'ordre de l'Euromillions pour les dix ans à venir, et j'en passe. Sauf qu'on ne sait pas, aujourd'hui, si Pi est un nombre univers ou non. Je me contenterai donc de rappeler que Pi est 1) un nombre réel irrationnel, car il ne peut pas s'exprimer comme le rapport entre deux nombres entiers, et 2) un nombre transcendant, car il n'est racine d'aucune équation polynomiale. Mais je reviendrai sur tout cela de manière plus sérieuse et analytique dans quelque temps.

20:44 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (4) | |  Facebook | | | |

14/06/2015

Pourquoi certains théorèmes sont-ils hors de notre portée?

 

Bibliotheque.jpgVoyez ces magnifiques rayonnages de livres qui s’alignent. Ils ne suffiraient même pas à contenir certaines démonstrations mathématiques particulièrement longues et complexes. Ni même les décimales de Pi. En octobre 2014, on en a ainsi identifié 13 000 milliards pour ce nombre transcendant. Un record ! Mais pour les contenir toutes, il faudrait environ 6 millions de volumes de mille pages chacun. Légèrement décourageant, on va dire. Sont-elles alors stockables sur le net ? Oui, mais je vous laisse imaginer le nombre d’octets nécessaires à cela.

Venons-en à présent au cas du «théorème géant», ainsi dénommé parce que la taille de sa démonstration défie nos capacités cognitives. En théorie des groupes, il désigne la démonstration du théorème de classification des groupes finis simples. En 1980, celle-ci a été considérée comme achevée. Petit problème : elle tient sur environ 15 000 pages (soit une quinzaine d’ouvrages de mille pages chacun) et se trouve dispersée dans 500 articles rédigés par une centaine de chercheurs. Dispersée dans des revues poussiéreuses, enfouie dans des collections inaccessibles, donc quelque part menacée par l’oubli, puisque seule une frange étroite de chercheurs peut en disposer, y compris sur internet. Et cela sans parler de sa fragilité. Quel mathématicien a pu la lire entièrement ? Qu’est-ce qui garantit, au fond, qu’elle ne contient aucune erreur ?

Dans cette optique, une démonstration de seconde génération, plus simple, a été entreprise depuis par plusieurs mathématiciens. Bonheur, elle ne s’étale que sur 5 000 pages et une douzaine de volumes, dont la moitié a déjà été publiée. Oui, mais c’est encore trop, et la communauté envisage désormais une démonstration de troisième génération qui tiendrait idéalement sur mille pages.

Pour arriver à leurs fins, les mathématiciens disposent aujourd’hui sur le net de plateformes collaboratives, telle polymathprojects.org, qui leur permettent d’avancer notablement sur certains problèmes irrésolus. Le projet 8 de cette plateforme étudie par exemple les écarts entre premiers consécutifs, et par ce biais, on a pu faire un pas de géant vers la démonstration de la conjecture des nombres premiers jumeaux (j’en ai déjà parlé dans plusieurs billets que je vous laisse redécouvrir si le cœur vous en dit). Avec un peu de chance, le théorème géant dont je parlais plus haut sera donc un jour à peu près accessible à tout le monde. Réjouissant, non ? Certes, mais il y a encore pire.

A savoir le célèbre problème de la «Discrepancy», soulevé en 1930 par le grand mathématicien hongrois Paul Erdös (1913 – 1996) et qui concerne, pour faire simple, les sous-suites d’«indice arithmétique» en théorie combinatoire des nombres. Je vous fais grâce de son énoncé (mais y reviendrai dans un prochain billet) pour ne parler que de la taille de sa preuve dans le cas K = 2. On note en effet généralement Discrep(K) la conjecture correspondant à l’entier K. Et si Discrep(1) est relativement aisée à résoudre, Discrep(2) est en revanche restée irrésolue durant 80 ans.

Sa démonstration, établie il y a peu par un ordinateur et par le travail de deux chercheurs de l’Université de Liverpool (Boris Konev et Alexei Lisitsa) via le projet Polymath, couvre 13 giga-octets ou gigabytes (soit autant que tout Wikipédia), ou, en termes d’impression, 13 000 ouvrages de 1000 pages chacun. Je n’ose imaginer ce qu’il en serait pour le cas Discrep(K) ! On s’évertue aujourd’hui à la simplifier. Ce n’est pas pour demain, ai-je envie d’ajouter.

 

18:48 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (0) | |  Facebook | | | |