01/02/2015

Le nombre 153 est-il divin?

 

poissons.jpgDaté de 1444, ce tableau de Konrad Witz s’intitule La Pêche miraculeuse. Exposé au Musée d’Art et d’Histoire de Genève, il représente un épisode de l’Evangile selon Jean (Jean 21 : 1 – 24), celui de la pêche miraculeuse de Saint-Pierre, qui ramène 153 gros poissons à Jésus et à ses disciples. Très peu de nombres sont cités dans la Bible. 153 en fait partie. De nombreuses interprétations exégétiques existent à son propos. Tel n’est pas aujourd’hui le sujet de mon billet, dans lequel je vous propose d’observer les curieuses et innombrables propriétés d’un nombre qui semble cacher bien des mystères.

1) Tout d’abord, 153 est la somme de tous les entiers de 1 à 17. Cela fait de lui un nombre triangulaire, le 17ème, comme l’illustre le schéma ci-dessous, chaque ligne représentant successivement les nombres 1 à 17. triangle.jpg

Les nombres triangulaires ont tous cette forme:


Capture d’écran 2015-02-01 à 18.07.51.png





Ils possèdent diverses propriétés. Je me contenterais d’en citer une. En 1638, Fermat affirma que tout entier était somme de trois nombres triangulaires (à condition de considérer 0 comme un nombre triangulaire). Gauss prouva cette décomposition en 1796. En voici le résultat, relativement aisé à vérifier (M désigne un entier positif; x, y et z trois entiers; et l'équation utilise par ailleurs le théorème des trois carrés de Legendre, lequel induit que tout entier positif congru à 3 modulo 8 est la somme de trois carrés parfaits) :

Capture d’écran 2015-02-01 à 18.09.41.png



2) 153 est également un nombre hexagonal, le 9ème, ceux-ci étant en fait les nombres triangulaires d’indices impairs.

3) Ensuite, 153 est égal à la somme des factorielles des entiers de 1 à 5. Rappelons que la factorielle d’un entier naturel n est le produit des nombres entiers strictement positifs inférieurs ou égaux à n. Exemple, la factorielle de 6 = 1 x 2 x 3 x 4 x 5 x 6 = 720. On note ce nombre 6 ! On voit donc clairement que

153 = 1 ! + 2 ! + 3 ! + 4 ! + 5 !

4) 153 est également divisible par la somme de ses chiffres. Soit 1 + 5 + 3 = 9. Et 9 x 17 = 153. On appelle ces nombres les nombres Harshad, terme sanskrit qui signifie «grande joie».

5) On peut encore écrire 153 sous la forme 153 = 3 x 51. Ce qui fait de lui un nombre de Friedman, soit un entier qui est le résultat d’une combinaison de tous ses chiffres dans une base donnée avec l’une ou l’autre des opérations élémentaires.

6) 153 est encore un nombre narcissique, c’est-à-dire un nombre égal à la somme des puissances p-ièmes de ses chiffres, p désignant le nombre de chiffres de n. A titre d’information, en voici la formulation mathématique.

Capture d’écran 2015-02-01 à 18.28.51.png

 





Plus simplement, 153 est 3-narcissique car 153 = 13 + 53 + 33.

7) Plus surprenant, prenons à présent au hasard n’importe quel multiple de 3, par exemple 7065. Elevons chacun de ses chiffres au cube, additionnons-les, puis répétons chaque fois la même opération avec le résultat de cette addition.

73 + 03 + 63 + 53 = 343 + 0 + 216 + 125 = 684

63 + 83 + 43 = 216 + 512 + 64 = 792

73 + 93 + 23 = 343 + 729 + 8 = 1080

13 + 03 + 83 + 03 = 1 + 0 + 512 + 0 = 513

53 + 13 + 33 = 125 + 1 + 27 = 153

On constate qu’on obtient 153 après un certain nombre de fois. Vous pouvez de votre côté tenter l’expérience avec n’importe quel multiple de 3, aussi grand soit-il. La série finira immanquablement par 153.

Miracle ? Je vous laisse juge. Car le 153 possède de nombreuses autres propriétés sur lesquelles je reviendrai un jour.

19:14 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (5) | |  Facebook | | | |

25/01/2015

Qui a peur de la théorie des groupes?

 

 

rubiks.jpgLes applications de la théorie des groupes sont aussi multiples que variées. Il y a même peu de domaines scientifiques dans lesquels elle n’apparaît pas. En physique théorique (dans l’électrodynamique classique), en chimie (dans le calcul des orbitales moléculaires), et même dans certains jeux, comme ci-dessus le célèbre Rubik’s Cube et ses permutations, la théorie des groupes est partout. Elle intervient également dans pratiquement tous les domaines mathématiques, ce qui rend souvent son étude malaisée, pour ne pas dire compliquée. Cela dit, son étude va des groupes les plus simples aux plus complexes. Le théorème de la classification des groupes simples demeure pourtant l’un des plus longs de l’histoire des mathématiques (lire à la fin de ce billet).

A l’origine, la notion de groupe a commencé à être utilisée car elle était pratique pour la résolution d’équations. Puis les groupes ont trouvé des implications dans la géométrie, avant de s’imposer comme une discipline à part entière. Mais qu’est-ce qu’un groupe, justement ? On peut y répondre en une phrase : il s’agit d’un ensemble muni d’une loi de composition interne associative avec un élément neutre et un symétrique pour chacun de ses éléments. Détaillons tout cela.

Prenons un ensemble quelconque, noté G, et munissons-le d’une loi de composition elle aussi quelconque, notée ●. La structure algébrique (G, ●) est un groupe si elle satisfait les quatre conditions ou propriétés suivantes (parfois dénommés axiomes sous une présentation plus formelle).

i) ● est une opération de G dans G lorsque deux éléments de cet ensemble, a et b, permettent toujours de déterminer un troisième élément, c, qui se trouve lui aussi dans G.

Ainsi, a, b G, on a :

a b = c avec c G.

Voilà pourquoi ● est dite loi de composition interne.

ii) Il existe un élément n de G qui vérifie l’égalité suivante pour tous les éléments de G (soit a G) :

n ● a = a ● n = a.

On appelle n l’élément neutre.

iii) Pour tout élément a de G, il existe un élément inverse – notons le a’ – tel que:

a a’ = n.

iv) Enfin, tous les éléments de G satisfont la propriété associative que voici :

(a ● b) ● c = a ● (b ●c).

Par ailleurs, un groupe est dit commutatif, ou abélien, s’il satisfait la propriété suivante, pour tous ses éléments :

a ● b = b ● a.

Quelques exemples aideront à mieux comprendre la notion de groupe. Z, l’ensemble des nombres entiers relatifs, muni de l’addition, est ainsi un groupe (infini) qu’on note (Z, +). Son élément neutre est le 0 et son élément inverse (ou ici opposé), pour tout pZ, est noté – p. Ainsi, p + ( p) = ( p) + p = 0, ce qu’on peut écrire plus simplement par p p = 0.

Dans la même logique, l’ensemble des nombres réels sans le zéro est un groupe (lui aussi infini) avec la multiplication noté (ℝ*, x). 1 est son élément neutre et 1/y son élément inverse pour tout y dans ℝ*. Autre exemple de groupe, là encore infini, celui des symétries d’un cercle de centre c, qui est en réalité un polygone à n côtés avec n tendant vers l’infini ().

Ces bases ne sont que les prémisses de la théorie des groupes, qui se développe ensuite avec les notions de sous-groupes, de groupes quotients ou d’isomorphismes (etc.), dont je parlerai peut-être un jour. Aujourd’hui, ce qu’on appelle les «groupes simples», c’est-à-dire ceux qui permettent de construire tous les autres, ont tous été identifiés. Quant à la démonstration complète de leur structure, elle se nomme le «théorème monstrueux». Et c’est loin d’être un euphémisme. La première rédaction de cette démonstration occupait en effet entre 10 000 et 15 000 pages. Au XXe siècle, elle a été réduite à 6 000. J’en reparlerai dans un prochain billet qui sera dédié au «monstre», The Monster, appellation d’un groupe fini, simple et non abélien qui contient plus d’éléments qu’il n’existe d’atomes dans tout l’univers !

20:12 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (4) | |  Facebook | | | |

18/01/2015

Que cache la conjecture de Gilbreath?

 

gilbreath01.jpgPour ce premier billet maths de 2015, j’ai choisi un sujet à la fois très abordable, car ne nécessitant pas un gros bagage mathématique pour être compris, et relativement ludique dans son approche. Il s’agit d’une hypothèse plus connue sous le nom de conjecture de Gilbreath. Pour l’illustrer, voici un tableau avec des nombres et des couleurs. Sur la première ligne, on note la suite de tous les nombres premiers, ici jusqu’à 71 (soit les vingt premiers d'entre eux). Puis on calcule la différence entre chaque premier et celui qui le suit (en valeur absolue). On répertorie la valeur obtenue sur la seconde ligne. On répète l’opération ensuite pour chaque ligne, jusqu’à la fin du tableau. On remarque alors que la première colonne du tableau, juste en dessous du 2, ne contient que des 1. Et qu’aucun 1 n’apparaît d’ailleurs dans aucune autre case.

La conjecture de Gilbreath stipule qu’aussi loin qu’on répète l’opération, la première colonne ne contiendra toujours que des 1.  Elle est à ce jour démontrée pour tous les nombres premiers inférieurs à 10 puissance 13.

Voici une autre disposition du tableau, peut-être plus aisée à lire, avec cette fois uniquement les onze premiers nombres premiers.


Capture d’écran 2015-01-18 à 02.46.53.png


















On y voit bien le résultat de chaque addition, sous chaque paire de nombres premiers et ainsi de suite. Les couleurs utilisées dans le premier tableau – violet pour les 1, blanc pour les 0 et jaune pour tous les autres nombres – permettent également d’amusantes spéculations. Les 0 sont donc ici en blanc et on remarque qu’ils forment des structures d’apparence triangulaires. Si on agrandit le tableau à une plus grande échelle – c’est-à-dire en prenant les 200 premiers nombres premiers -, la triangulation des 0 est confirmée, comme on peut le voir ci-dessous.

gilbreath03.jpeg

 

Un schéma qui évoque du reste les triangles de Sierpinski. La conjecture de Gilbreath a été formulée en 1958 par le mathématicien Norman J. Gilbreath. Elle semble pourtant avoir déjà été proposée par d’autres chercheurs au XIXe siècle, ce qui n’est pas illogique, car elle résulte finalement d’un travail d’observation auquel tout le monde ou presque pourrait se livrer. Qu’apporterait sa résolution ? Difficile à dire, mais sans doute pas une révolution en théorie des nombres.

Ultime remarque, on notera, dans la seconde ligne du tableau, qu’apparaissent tous les écarts successifs entre premiers. L’écart de 2 indique tous les jumeaux. L’écart de 4 tous les premiers dits cousins. Et l’écart de 6 tous les premiers dits sexy. Si ces valeurs se reproduisaient à l’infini, cela prouverait bien sûr que la conjecture des nombres premiers jumeaux (et cousins et sexy) est vraie.

 

18:02 Publié dans Mathématiques, Sciences | Lien permanent | Commentaires (0) | |  Facebook | | | |